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Abstract

A detailed numerical study is performed to investigate radiative and convective heat transfer enhancement in pipes
filled with small diameter (~ 100 um) silicon carbide fibers. Radiation between fibers and the tube wall, conduction
within fibers and convection from the fibers to the surrounding fluid drive the heat transfer enhancement. Macroscopic
(porous media) modeling is used to determine the velocity, pressure, and temperatures fields for periodic fiber arrays of
various porosites under laminar flow conditions (Re, = 1000). Key features of the macroscopic model include two-
dimensional effects, nongray radiative exchange, and the relaxation of the local thermodynamic equilibrium assumption.
Results show that fiber arrays increase heat transfer largely by the radiative mode, with significant enhancement shown
for porosities as high as 0.99. The increased pressure drop due to the presence of the fibers rises monotonically as the
porosity is reduced. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

a specific surface area

¢, specific heat

C permeability parameter

d fiber diameter

D tube diameter

h convective heat transfer coefficient

I, i,; spectral and blackbody radiative intensities
K, K permeability scalar and tensor

k, k thermal conductivity scalar and tensor; complex
index of refraction

L tube length

n real index of refraction

Nu, Nusselt number

p pressure

¢, gz heat flux scalar and radiative heat flux vector
Q. absorption efficiency factor

rradial coordinate

Re;,, tube Reynolds number
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S; interfacial momentum source tensor

T temperature

u axial velocity

u velocity vector

U average velocity

V' representative elementary volume (REV)
z axial coordinate.

Greek symbols

f, spectral extinction coefficient
y circumferential coordinate

I scalar or vector quantity

¢ volume fraction

g, wall emissivity

0 polar angle

® heat exchanger effectiveness
K;, & spectral and Planck-mean absorption coefficients
A wavelength

1 dynamic viscosity

p density

g, spectral scattering coefficient
T optical depth

¢ azimuthal angle
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@, scattering phase function
Y scattering angle

o wave number

Q solid angle.

Subscripts and superscripts
b bulk
centerline
effective
fluid phase
fluid-solid interface
homogeneous
inlet
phase
solid phase
wall
nondimensional quantity.
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1. Introduction

Economic and environmental incentives continue to
reward innovative concepts for improving heat exchanger
performance and durability. This is especially true for
equipment operating under highly corrosive, high tem-
perature conditions, such as in coal-fired boilers or waste-
to-energy incinerators where corrosion is greatly exacer-
bated by excessive operating temperatures [1-3]. At these
high temperatures (>600°C), radiative transport can
play a significant role in promoting heat transfer provided
the necessary transfer mechanisms are present. For exam-
ple, the addition of solid particles in a flow field can
increase heat transfer coefficients by as much as a factor
of 20 [4]. A major drawback, of course, is the damage
these particles can have on system components. A
stationary porous insert which acts as a participating
media avoids this problem but, unless the porosity is very
high, the insert can introduce significant pressure losses.

Im and Ahluwalia [5] recently investigated an insert
consisting of long, small diameter (~ 100 um) fiber arrays
aligned in the flow direction. If the fiber arrays are highly
porous, pressure losses will be reduced. However, if they
are too porous, contribution to promoting radiative heat
transfer will be inconsequential. As an introductory
study, the Im and Ahluwalia investigation [5] did an
excellent job in providing quantitative evidence of heat
transfer enhancement and pressure losses in fiber filled
tubes. Based on their very positive results, we believe a
more in-depth investigation is merited ; one which ana-
lyzes fiber/fluid interaction more closely. In particular,
because the interest is in highly porous arrays and only
the fibers are active in radiation transfer (the fluid does
not participate), local thermodynamic equilibrium
between the fluid and fibers must be examined; such
effects have shown to be important in nuclear systems
[6, 71.

In this study we model the flow as porous media, and
couple conduction, convection, and radiation within the
global domain. Silicon carbide (SiC) is selected as the
fiber material, as it was identified by Im and Ahluwalia
[5] as having the best radiative characteristics out of a
number of ceramic and metallic compounds. The analysis
of Im and Ahluwalia [5] is extended by detailed numerical
simulations which account for multidimensional effects
and the macroscopic coupling of the heat transfer modes.
In addition, emphasis is placed on pipe wall temperature
reduction as a performance criteria. The sensitivity of
porosity is closely studied for laminar flow conditions.

2. Analysis

In the analysis of flow through porous media, it is
common to simplify the complex nature of flow around
the solid structure by volume averaging of the micro-
scopic flow equations [8]. The volume average of any
scalar or vector quantity I';, associated with phase k, is
defined as

T =1VJ rdv ()

where V is the representative elementary volume (REV).
(I, is zero in regions not occupied by phase k.) The
intrinsic volume average is defined as

<rk>"=if r.dv @
Vil
and may be related to the total volume average by
£ T, OF = (T',>, where ¢, is the volume fraction of phase
k. For flows in fiber arrays, two distinct phases are
present : fluid phase f'and solid phase s. For steady state,
incompressible flow with spatially uniform properties and
volume fraction, the volume averaged equations of con-
tinuity, momentum, and energy for the fluid phase are as
follows [6, 8, 9] :

V-duy =0 Q)
g Cupy - V<uyy = =V{p' + %:-V2<“f> =S 4)
7 '

PsCp. VLT 0y = ke V2T + hyay (KT —<Tp)).

(5)
In the above expressions, S, is the interfacial momentum
source term tensor, k., the effective fluid thermal con-
ductivity tensor, /h, is the interfacial convection
coefficient, and aj the specific surface area of the inter-
face ; the other variables are listed in the nomenclature.
Since the solid phase is stationary, only the energy equa-
tion needs to be considered :

0 = koo, V(T = hpan (KT —LT) =<V qz>  (6)
where <V * qgr ) is the divergence of the radiative heat flux,
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which is not included in the fluid phase since the fluid is
transparent. Treatment of the source terms resulting from
the volume averaging procedure is presented below.

2.1. Momentum and energy source terms

Darcy flow is considered for the functional form of the

interfacial momentum source term tensor S;:
u

Sy = LK/> (7
where K is the Darcian permeability tensor. Non-Darcy
effects should not be important in this situation since the
radial velocity components are small and flow longi-
tudinal to the fiber array does not exhibit any inertial
effects due to vortex generation or wakes. Astrom et al.
[10] have reviewed a number of investigations of Darcian
flow through aligned fiber beds; they report the func-
tional form of K as

K. K d°

C.= ¢ "6, ®

where K. and K, are the permeabilities in the axial and

radial directions for a square array, and d is the fiber

diameter. Parameters C. and C, have been obtained by

Drummond and Tabhir [11] from Stokes flow analyses:
0.05097¢}

1
C.—In <—>f 1476426, —0.562 — — 26 )
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Figure 1 shows the functional relationship of the per-

meability, nondimensionalized by the square of the fiber
diameter d, with respect to the fluid volume fraction. In
qualitative terms, the square root of the permeability is
indicative of the characteristic pore length scale [8]. For
the range of porosities considered in this study
(0.90 < ¢,<0.99), the size of the pores is at least two
orders of magnitude smaller than the pipe diameter.
Since the fluid volume fraction is large, the effective
conductivity of the fluid phase is taken as the actual fluid
conductivity, or
Ky = kpz = Fky. an
Similar to the fluid phase, the axial conductivity for the
solid is
k. =k, (12)
while k,, = 0 because the fibers are not connected radi-
ally. The determination of the interfacial heat transfer
coefficient /4 is found via the equivalent annulus for-
mulation presented by Sparrow et al. [12], which is an
accurate approximation for longitudinal flows in fiber
arrays with high porosity. The Nusselt number
Nu, = hdfk, is shown in Fig. 1 as a function of the
fluid volume fraction. Finally, the interfacial surface area
ay = 4e,/d for square arrays.

2.2. Radiative transport

Radiation heat transfer has been investigated in a num-
ber of porous media applications, as reviewed by Kaviany
and Singh [13] and Tien and Vafai [14]. The divergence
of the radiative heat flux is

Veoqr) = JL K; <4n[b;'_J I dQ)di (13)

0
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Fig. 1. Permeability and Nusselt number vs. fluid volume fraction, d = 150 ym.
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where k; is the absorption coefficient, 7, the blackbody
intensity, 7, the radiative intensity, and A the wavelength.
The radiative intensity is found via the radiative transfer
equation (RTE):

S VI, = k0 — B0, + ”—J L,®, dO (14)
4r |,
where f5, is the extinction coefficient, o, the scattering
coefficient, and @, the scattering phase function. Because
the fluid is nonparticipating, I, is computed based upon
the local solid temperature < T )*, and the radiative source
term is not included in the fluid phase energy equation.
In order to determine the absorption and scattering
coefficients, the real and complex indices of refraction, n
and k, must be known for the given fiber material. Palik
[15] present the optical properties for a number of solid
materials, including SiC. An oscillator model is reported
to be in good agreement with experimental results in the
2-22 pym range:

(n—ik)® = ¢, <1 +ﬂ> (15)
w

2 —w’+ioro

where o is the wavenumber, o, = 969 cm ™', w, = 793
cm™!, wr=4.76 cm~!, and ¢, = 6.7 (considering the
ordinary ray). Figure 2 illustrates n and k as a function
of wavelength for SiC. It can be seen that the optical
properties are a strong function of wavelength, with an
abrupt change in n and k shown around 10 um. Next, the
absorption efficiency factor Q, is found from solution of
the electromagnetic wave equation. Following Bohren
and Huffman [16], the wavelength dependence of Q, is
computed as a function of the size parameter x = nd//
and optical properties n and k (see inset of Fig. 3). The

absorption coefficient x, is related to the absorption
efficiency factor by

o -0.(%) (16)

The stepwise gray approximation [17] is used to simplify
the nongray treatment, and Q, is subdivided into five
nongray zones as shown in Fig. 3. Zones I, III, and V
have constant x; values, with k; = 0 (i.e. transparent) in
Zone 1, and k, in Zone V extrapolated from Zone IV.
Zones II and IV exhibit gas-like absorptive behavior,
hence a special procedure is employed to determine x for
each of these zones. As described by Modest [17], xk and
the bandwidth A/ are chosen so that the stepwise gray
approximation predicts the correct band absorptance for
both optically thin and optically thick situations. Thus,
k and AZ for these zones are found via the following
relations : optically thin limit,

J’@:dl{ = KA 17)

and optically thick limit,
[d=e%)dA = A1 —e™"¥n) (18)
where X, is the mean beam length of the media, taken as
0.94 D for an infinite circular cylinder [17]. Figure 3
shows k for each of the four radiatively participating
zones as a function of porosity.

Figure 4 shows the scattering phase function @ for a
given scattering angle W, as calculated by the diffraction
theory approximation [16] :

L[

4x i sin 'V

E 4 -2
= 10 -

10

10

10

10' 10
Anm)

Fig. 2. Optical properties of SiC vs. wavelength.
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Fig. 3. Absorption coefficient vs. fluid volume fraction for SiC fibers, d = 150 um (inset : absorption efficiency factor vs. wavelength).
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Fig. 4. Scattering phase function vs. scattering angle for SiC fibers, d = 150 um.

For the size parameters shown in the figure, which cover
the range of values of interest for this application, ® is
shown to be highly forward scattering. Since the phase
function varies over several orders of magnitude over
only a few degrees of scattering angle, the scattering
component of radiation is treated as transmission [17].

2.3. Numerical approach

A finite volume-based numerical procedure based on
the SIMPLE algorithm [18] is used to solve the macro-

scopic equations (3)—(5) in two-dimensional axi-
symmetric coordinates r and z, with the hybrid scheme
[18] used for convective terms. The solution procedure
to the RTE is described in Moder et al. [19], with slight
modification made to the treatment of the spatial grid in
the circumferential direction, y. Instead of considering a
fixed number of control volumes for 0 <y < 2z, only a
single control volume is considered in this direction in
order to minimize computational effort. Rotational sym-
metry is then used to assign the boundary intensity values
on the circumferential interfaces, and care is taken to
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ensure that the circumferential control volume Ay is con-
sistent with the azimuthal control volume A¢. The spatial
grid is further divided into 10 x 40 control volumes in the
radial and axial directions, respectively. Also, the angular
grid is divided into 8 x 16 control volumes in the 6 and ¢
directions.

To check the validity of the model, the numerical study
presented by Einstein [20] was selected as one benchmark.
This study considers a radiatively participating gray gas
flowing through a pipe with black walls and constant
temperature (750 K) ; the inlet and outlet of the pipe are
black, with T; = 300 K. Figure 5 shows a comparison to
the Einstein study, which features the nondimensional
outlet temperature vs. optical depth for a number of
conduction-to-radiation ratios. Our results show a vari-
ation of no more than 5% from values reported by
Einstein. In addition, the accuracy of the radiation cal-
culations was checked against results presented in Chui
et al. [21], who determined an exact solution to radiative
transfer in a cylindrical enclosure with cold, black walls
and uniform (gray) medium temperature. The non-
dimensionalized wall heat flux is shown in Fig. 6 as a
function of axial location. Good agreement (less than
5% deviation) can be seen for three optical depths shown,
with the current results approaching the exact solution
as the azimuthal angular discretization is further refined.
(It should be noted that the spatial grid is 16 x 30 for this
comparison.)

For the present application, no-slip and no-penetration
boundary conditions are imposed at the tube wall, with
the outlet velocity extrapolated in the streamwise direc-
tion. The inlet and outlet of the tube are black, and a
constant heat flux ¢, = 1800 W m™? is applied to the

A.R. Martin et al./Int. J. Heat Transfer 41 (1998) 3431-3440

tube wall, which has a total hemispherical emissivity
indicative of unpolished metals (¢, = 0.3 [17]). The inlet
fluid temperature is fixed at 300 K, and the outlet fluid
temperature, along with the inlet and outlet solid tem-
peratures, are extrapolated from the interior. Fluid and
solid are considered to be isothermal at the tube wall,
and the wall temperature is found via a balance of the wall
heat flux, conduction and radiation. A tube Reynolds
number, Re,, of 1000 is considered, with a fully
developed laminar (parabolic) profile assigned at the
inlet. The physical properties of the fluid (air) and SiC
are taken at 300 K, and can be found in Incropera and
DeWitt [22]; see Table 1 for their values, along with
other input parameters.

3. Results

One consequence of employing fiber arrays is the alter-
ation of the velocity profile due to the strong flow resist-
ance offered by the porous media. Figure 7 illustrates the
nondimensional centerline velocity u¥ as a function of
axial length for a range of porosity values. The value of
u¥is defined as

e 0.2
¢ U
where <{u/(0,z)) is axial centerline velocity and U the
average axial velocity. For a porosity of one, the cent-
erline velocity is twice the average velocity, resulting from
the fully developed laminar profile. Addition of fiber
arrays tends to flatten out the flow within an entry length,
which becomes very short as the porosity is reduced.

(20)

open symbols: current study
closed symbols: Einstein (1963)
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Fig. 5. Nondimensional outlet temperature vs. optical depth for radiatively participating gas flow (L/D = 5.0, Re, = 1309, T,, = 750

K, and Tj/T, = 0.4).
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exact solution (Chui et al. 1992)
016x12 (Ay=x/4)

032x12 (Ay=w8)

©64x12 (Ay=w16)
éx 0

control volumes

Fig. 6. Nondimensional wall heat flux vs. nondimensional axial length for radiative heat transfer in a cylindrical enclosure with cold

walls and uniform medium temperature (L/D = 1.0).

Table 1
Input parameters for fiber array analysis

Parameter Value

o, 1.23kgm—?

i 1.79x 10 Nsm™?
Cps 1006 J kg "K'
ky 0.025Wm~'°C~!
k 490 Wm—1°C~!
T, 300 K

D 0.025m

L 0.5m

Re) 1000

qw 1800 W m—2

In order to quantify the heat transfer enhancement, a
heat exchange effectiveness ®(z) is defined as
T,(2) — T:,(0) 1)
T(2)—Ty(2)
where Ty (z) and T,,(z) are the bulk and wall temperatures
for axial location z. The heat exchange effectiveness rep-
resents the ratio of the actual heat transfer to the fluid
to the maximum possible heat transfer at a given axial
location. Figure 8 shows the heat exchange effectiveness
at the tube outlet z = L as a function of porosity and
optical thickness, where 1y, is based on the Planck-mean
absorption coefficient, &, evaluated at 580 K. Six different
curves of ®(L) are shown to illustrate the importance of
the heat transfer modes and modeling assumptions,
which can be classified as follows : radiative transfer (with
conduction and convection) vs. no radiative transfer (i.e.
conduction and convection alone) ; nongray vs. gray radi-

0(2) =

ative transfer; and local thermodynamic equilibrium
(LTE) vs. nonequilibrium (denoted non-LTE). The fig-
ure shows that the radiative mode of heat transfer is
responsible for a significant portion of the heat transfer
augmentation. Nongray effects are most important in the
optically thin region, while at higher optical depths the
difference between gray and nongray radiative transfer is
indistinguishable. Also, the results illustrate the import-
ance of nonequilibrium effects, especially at higher
optical depths. For the case of nongray radiative transfer
with the non-LTE assumption, an optimum in ®(L) can
be seen at tp, = 5.7, showing the self-shielding effect
which is evident as the fiber array becomes strongly
absorbing. With respect to the case of conduction and
convection alone, the sharp increase in ®@(L) as ¢, — 1.0
can be attributed to the change in velocity profile from
parabolic to flat. The importance of relaxing the LTE
assumption for the no radiation case can also be seen,
although to a lesser degree.

To assess the pressure drop penalty introduced by the
fiber arrays, a nondimensionalized pressure gradient
—Vp* is defined as:

_V<pf>'/
—Vp,
representing the ratio of the pressure gradient with the
fiber arrays to the pressure gradient for homogeneous
(no fiber) flow. The value of —Vp*, also shown in Fig. 8,
rises monotonically as the porosity is reduced, attaining
values on the order of ten to one thousand times the
homogeneous pressure gradient. (At the optimum value
of ®(L), —Vp* =316.) The comparison to —Vp* as
computed by Darcy’s law shows that hydraulic entry

length effects are not appreciable in this application.
It is also of interest to evaluate heat transport down-

—Vp* = (22)
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Fig. 8. Heat exchange effectiveness at tube outlet and nondimensinalized pressure drop vs. fluid volume fraction.

stream of the inlet of the tube, as shown in Fig. 9, the heat
exchange effectiveness ®(z) varies axially for a number of
different porosities, with comparison made to the radi-
ation vs. no radiation cases. For the case with radiative
transfer included, ®(z) initially rises sharply as the
porosity is reduced However, the self-shielding effect
mentioned above becomes more substantial further
downstream as temperatures rise. When radiation is not
included, the change in the velocity profile causes a sud-
den rise in ®(z) at the inlet. The dependency of ®(z) with
porosity can be attributed to the influence of fiber array
conductivity at larger solid volume fractions. Leveling off

of @(z) at the tube outlet results from the zero gradient
boundary condition.

To evaluate the reduction in wall temperature, the
nondimensional tube wall temperature, T3(z) =
T.(2)/T; is shown in Fig. 10 as a function of axial
location. At the inlet, little differences can be seen
between the radiation and no radiation cases. However,
the importance of radiative transfer appears further
downstream as this mode of heat transfer becomes more
dominant. At the outlet, a significant reduction in wall
temperature (about 30% with radiation) is achieved with
the fiber arrays even for porosities as high as 0.99. This
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Fig. 9. Heat exchange effectiveness vs. nondimensional axial length.
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Fig. 10. Nondimensional tube wall temperature vs. nondimensional axial length.

finding shows that high porosity fiber arrays can be
employed for applications where only a moderate
reduction in wall temperature is required, hence min-
imizing the pressure drop penalty.

4. Concluding remarks

The present study confirms that convective and radi-
ative internal heat transfer augmentation with fiber
arrays has great potential as a technique for use in novel
heat exchange devices. For the specified parameters,the
heat exchange effectiveness was doubled with the fibers

arrays as compared to homogeneous flow, resulting in a
30% reduction in tube wall outlet temperature. Although
LTE was apparent in the case of conduction and con-
vection alone, significant departure from this assumption
could be seen when radiation was included. This finding
illustrates the influence of non-LTE effects in cases where
radiation is important.

The final merits of the fiber array must, of course, be
determined from an overall performance analysis with
respect to the given application, especially since the
pressure drop penalty is large. Findings from this study
point to the need for experimental investigations in order
to measure the actual performance of fiber arrays and to
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validate numerical modeling. Future studies should be
conducted to address turbulent flow, since a large number
of applications operate in the high Reynolds number
range.
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